1陶瓷绝热防腐涂料的绝热原理
1.1超级绝热涂料的概念
早在1969年,美国太空总署提出以陶瓷隔热砖提供太空船的绝热保护后,就认为涂料绝热是可能的。美国太空总署发表的数据表明,厚9.5~31.8mm的陶瓷隔热砖中,真正发挥绝热作用的是陶瓷隔热砖上的0.25mm厚的陶瓷涂料外层,占绝热效果的95%,而陶瓷隔热砖的基层(泡沫体)只提供5%的绝热保护。为此1977年,美国成立了一家公司,专门致力于研究、开发和生产这种涂料。但其机理始终对外保密。
1992年美国学者hunT,a.j.等在国际材料工程大会上提出了超级绝热材料(suPPer InsuIaTor)的概念。与此概念相近的还有“高性能绝热材料(hIghPerformanceInsu IaTIngmaTerIaI)”。在此之后很多学者陆续使用了超级绝热材料的概念。一般认为超级绝热材料是指:在预定的使用条件下,其导热系数低于“无对流空气”导热系数的绝热材料。
1.2陶瓷绝热涂料的绝热机理
对于绝热涂料而言,(固体)热传导主要由绝热材料中的固体部分来完成;热对流则主要由绝热材料中的空气来完成;热辐射的传递不需要任何介质。因此要实现超级绝热材料的目的,一是要使材料的体积密度在保持足够的机械强度的同时,其体积密度要极端的小;二是要将空气的对流减弱到极限;三是要通过近于无穷多的界面和通过材料的改性使热辐射经发射、散射和吸收而降到最低。
研究结果表明,当材料中的气孔直径小于一定尺寸时,气孔内的空气分子则失去了自由流动的能力,而是相对地附着在气孔壁上,这时材料处于近似于真空状态。同时由于材料内部含有极多的发射界面与散射微粒,再加上在热辐射吸收方面对材料进行改性,保证了陶瓷绝热涂料不论在高温、常温及低温下有良好的绝热效果。
2陶瓷绝热防腐涂料的协同绝热理论
陶瓷绝热涂料涉及到真空绝热技术、红外反射技术、热力学技术以及散射技术、防腐技术等,它是众多绝热技术协同作用的结果。其理论应属多学科边缘技术的结合,在此称为协同绝热理论概括如下:
2.1真空隔热(保温)原理
真空隔热(保温)一般情况下系用以下方案:1)采用高真空双层壁;2)采用高真空的型腔,型腔内有一定数量的中间抛光薄片作为反射屏,它能很好的反射光线,以防止热量辐射传递;3)有粉末状的物质或者轻质纤维的型腔,这类粉末或者轻质纤维有良好的隔热保温特性。无论什么情况,任何一种隔热保温方法,包括三种热量:
Q=Q壳-Q气+Q辐
Q壳-隔热保温材料壳体传递的热量。隔热保温材料壳体传递热量(Q壳)取决于壳体的结构。
Q气-隔热保温材料之间填充的气体传导热量和气体对流所传递的热量。
Q辐-辐射传热。如果要高真空隔热保温,那么在不同温度(To和Tx)两个表面所建立隔热保温壳体内,需建立10-1Pa左右的真空,这几乎完全排除了气体传递热量(Q气)。
气体传递的热量取决于壳体内气体分子的特性它服从努森准则。
Kn=1/d>1
式中1-分子平均自由度
d-系统的特性尺寸
当真空隔热保温材料壳体内真空度达到10-1Pa,气体分子数量大大减少,分子的自由行程可以达几百厘米,即分子的自由度很大,即Kn远大于1,分子相互碰撞几率很小,因此分子热传递大大减弱。但当壳体内真空度达到10-2~10-3Pa,假如真空隔热保温壳体内填充有粉末状片状填料,系统的隔热保温能力可增加几倍,这是因为在真空隔热保温壳体内填充粉末片状填料可以减少(或消除)辐射热传递。
2.2红外辐射的基本原理
从热辐射观点来看,外层空间可以近似看成一个绝对温度为零的黑体,如果在大气外设一个绝对温度为T=300K的黑体,则它将被逐渐地冷却下来。根据斯蒂分-波尔兹曼定律,可以近似算出它辐射到外层空间的单位面积能量W:
W=aT-4=5.7×10-8(300)-4=450W/m2
这个数值是非常高的致冷量。但如果把此黑体放到地面上,则其致冷效果将急剧下降,这主要是由于大气阻挡部分红外辐射到达外层空间。在波长为8~13.5μm的区域内,水蒸汽和二氧化碳的吸收能力也较弱,这样就使大气层对8~13.5μm的红外辐射有很高的透过能力。在红外气象学中,称这个透过率很高的波段为“红外窗口”。通过这个“窗口”,地面上的辐射体可以直接辐射到外层空间。辐射体的辐射效果直接与它的辐射性能有关。假设辐射体表面涂有一层特殊的光谱选择性涂层,其特性为:在8~13.5μm波段内,此涂层的红外辐射性能等同于黑体,而在此“窗口”外它是理想的反射体,即不发射(因此也不吸收)辐射能。这种理想的光谱选择涂层的辐射特性可用图1来表示。